Exploración de la media ponderada ponderada exponencial La volatilidad es la medida más común del riesgo, pero viene en varios sabores. En un artículo anterior, mostramos cómo calcular la volatilidad histórica simple. Utilizamos la volatilidad para medir el riesgo futuro. Utilizamos los datos reales de los precios de las acciones de Google para calcular la volatilidad diaria basada en 30 días de datos de existencias. En este artículo, mejoraremos la volatilidad simple y discutiremos el promedio móvil exponencialmente ponderado (EWMA). Vs histórico. Volatilidad implícita En primer lugar, permite poner esta métrica en un poco de perspectiva. Existen dos enfoques generales: volatilidad histórica e implícita (o implícita). El enfoque histórico supone que el pasado es un prólogo que medimos la historia con la esperanza de que sea predictivo. La volatilidad implícita, por el contrario, ignora la historia que resuelve por la volatilidad implícita en los precios de mercado. Espera que el mercado conozca mejor y que el precio de mercado contenga, aunque implícitamente, una estimación consensual de la volatilidad. Si nos centramos sólo en los tres enfoques históricos (a la izquierda de arriba), tienen dos pasos en común: Calcular la serie de retornos periódicos Aplicar un esquema de ponderación En primer lugar, Calcular el retorno periódico. Ésa es típicamente una serie de vueltas diarias donde cada vuelta se expresa en términos continuamente compuestos. Para cada día, tomamos el registro natural de la relación de precios de las acciones (es decir, el precio hoy dividido por el precio ayer, y así sucesivamente). Esto produce una serie de retornos diarios, de u i a u i-m. Dependiendo de cuántos días (m días) estamos midiendo. Eso nos lleva al segundo paso: aquí es donde los tres enfoques difieren. En el artículo anterior (Usando Volatilidad Para Calcular el Riesgo Futuro), mostramos que bajo un par de simplificaciones aceptables, la varianza simple es el promedio de los retornos cuadrados: Obsérvese que esto suma cada uno de los retornos periódicos, luego divide ese total por el Número de días u observaciones (m). Por lo tanto, su realmente sólo un promedio de los retornos cuadrados periódico. Dicho de otra manera, cada cuadrado de retorno se da un peso igual. Por lo tanto, si alfa (a) es un factor de ponderación (específicamente, 1 / m), entonces una variante simple se parece a esto: El EWMA mejora en la varianza simple La debilidad de este enfoque es que todas las ganancias ganan el mismo peso. El retorno de ayer (muy reciente) no tiene más influencia sobre la varianza que el retorno de los últimos meses. Este problema se fija mediante la media móvil ponderada exponencialmente (EWMA), en la cual los rendimientos más recientes tienen mayor peso sobre la varianza. La media móvil exponencialmente ponderada (EWMA) introduce lambda. Que se denomina parámetro de suavizado. Lambda debe ser menos de uno. Bajo esta condición, en lugar de iguales ponderaciones, cada cuadrado de retorno es ponderado por un multiplicador de la siguiente manera: Por ejemplo, RiskMetrics TM, una empresa de gestión de riesgos financieros, tiende a utilizar un lambda de 0,94 o 94. En este caso, el primero Más reciente) cuadrado es ponderado por (1-0.94) (. 94) 0 6. El próximo cuadrado de retorno es simplemente un lambda-múltiplo del peso anterior en este caso 6 multiplicado por 94 5.64. Y el tercer día anterior el peso es igual (1-0.94) (0.94) 2 5.30. Ese es el significado de exponencial en EWMA: cada peso es un multiplicador constante (es decir, lambda, que debe ser menor que uno) del peso de los días anteriores. Esto asegura una varianza que está ponderada o sesgada hacia datos más recientes. (Para obtener más información, consulte la hoja de cálculo de Excel para la volatilidad de Google.) A continuación se muestra la diferencia entre la volatilidad y EWMA para Google. La volatilidad simple pesa efectivamente cada vuelta periódica en 0.196 como se muestra en la columna O (teníamos dos años de datos de precios de acciones diarios, es decir, 509 devoluciones diarias y 1/509 0.196). Pero note que la Columna P asigna un peso de 6, luego 5.64, luego 5.3 y así sucesivamente. Esa es la única diferencia entre la varianza simple y EWMA. Recuerde: Después de sumar la serie completa (en la columna Q) tenemos la varianza, que es el cuadrado de la desviación estándar. Si queremos volatilidad, necesitamos recordar tomar la raíz cuadrada de esa varianza. ¿Cuál es la diferencia en la volatilidad diaria entre la varianza y EWMA en el caso de Googles? Su significativo: La variación simple nos dio una volatilidad diaria de 2,4 pero la EWMA dio una volatilidad diaria de sólo 1,4 (ver la hoja de cálculo para más detalles). Aparentemente, la volatilidad de Googles se estableció más recientemente, por lo tanto, una simple varianza podría ser artificialmente alta. La variación de hoy es una función de la variación de los días de Pior Usted notará que necesitábamos calcular una larga serie de pesos exponencialmente decrecientes. No haremos la matemática aquí, pero una de las mejores características de la EWMA es que toda la serie se reduce convenientemente a una fórmula recursiva: Recursiva significa que las referencias de la varianza de hoy (es decir, es una función de la variación de días anteriores). Esta fórmula también se encuentra en la hoja de cálculo, y produce exactamente el mismo resultado que el cálculo de longitud larga. Se dice: La varianza de hoy (bajo EWMA) equivale a la varianza de ayer (ponderada por lambda) más la vuelta al cuadrado de ayer (pesada por uno menos lambda). Observe cómo estamos agregando dos términos juntos: la variación ponderada de ayer y la ponderada ponderada de ayer, la vuelta al cuadrado. Aun así, lambda es nuestro parámetro de suavizado. Un lambda más alto (por ejemplo, como RiskMetrics 94) indica una disminución más lenta en la serie - en términos relativos, vamos a tener más puntos de datos en la serie y van a caer más lentamente. Por otro lado, si reducimos el lambda, indicamos una mayor decaimiento: los pesos se caen más rápidamente y, como resultado directo de la rápida decaimiento, se utilizan menos puntos de datos. (En la hoja de cálculo, lambda es una entrada, para que pueda experimentar con su sensibilidad). Resumen La volatilidad es la desviación estándar instantánea de un stock y la métrica de riesgo más común. Es también la raíz cuadrada de la varianza. Podemos medir la varianza históricamente o implícitamente (volatilidad implícita). Al medir históricamente, el método más fácil es la varianza simple. Pero la debilidad con la varianza simple es que todas las ganancias obtienen el mismo peso. Así que enfrentamos un trade-off clásico: siempre queremos más datos, pero cuanto más datos tengamos, más nuestro cálculo se diluye por datos distantes (menos relevantes). La media móvil exponencialmente ponderada (EWMA) mejora la varianza simple asignando pesos a los retornos periódicos. Haciendo esto, ambos podemos usar un tamaño grande de la muestra pero también dar mayor peso a vueltas más recientes. 8.4 Modelos de media móvil En lugar de utilizar valores pasados de la variable de pronóstico en una regresión, un modelo de media móvil utiliza errores de pronóstico anteriores en un modelo similar a una regresión. Y c e teta teta e dots theta e, donde et es ruido blanco. Nos referimos a esto como un modelo MA (q). Por supuesto, no observamos los valores de et, por lo que no es realmente regresión en el sentido usual. Observe que cada valor de yt puede considerarse como una media móvil ponderada de los últimos errores de pronóstico. Sin embargo, los modelos de media móvil no deben confundirse con el suavizado promedio móvil que discutimos en el Capítulo 6. Un modelo de media móvil se utiliza para pronosticar valores futuros mientras que el suavizado medio móvil se utiliza para estimar el ciclo de tendencias de valores pasados. Figura 8.6: Dos ejemplos de datos de modelos de media móvil con diferentes parámetros. A la izquierda: MA (1) con y t 20e t 0.8e t-1. Derecha: MA (2) con y t e t - e t-1 0.8e t-2. En ambos casos, e t es el ruido blanco normalmente distribuido con media cero y varianza uno. La Figura 8.6 muestra algunos datos de un modelo MA (1) y un modelo MA (2). Al cambiar los parámetros theta1, dots, thetaq, se obtienen diferentes patrones de series temporales. Al igual que con los modelos autorregresivos, la varianza del término de error y sólo cambiará la escala de la serie, no los patrones. Es posible escribir cualquier modelo estacionario AR (p) como un modelo MA (infty). Por ejemplo, usando la sustitución repetida, podemos demostrar esto para un modelo de AR (1): begin yt amp phi1y et amp phi1 (phi1y e) ph php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php 1, el valor de phi1k se hará más pequeño a medida que k sea mayor. Así que finalmente obtenemos yt et phi1 e phi12 e phi13 e cdots, un proceso MA (infty). El resultado inverso se cumple si imponemos algunas limitaciones a los parámetros de MA. Entonces el modelo MA se llama inversible. Es decir, que podemos escribir cualquier proceso de MA (q) invertible como un proceso de AR (infty). Los modelos Invertibles no son simplemente para permitirnos convertir de modelos MA a modelos AR. También tienen algunas propiedades matemáticas que los hacen más fáciles de usar en la práctica. Las restricciones de invertibilidad son similares a las restricciones de estacionariedad. Para un modelo MA (1): -1lttheta1lt1. Para un modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condiciones más complicadas se mantienen para qge3. Una vez más, R se encargará de estas limitaciones al estimar los modelos.2.1 Modelos de media móvil (modelos MA) Modelos de series de tiempo conocidos como modelos ARIMA pueden incluir términos autorregresivos y / o términos de media móvil. En la semana 1, aprendimos un término autorregresivo en un modelo de series de tiempo para la variable x t es un valor retrasado de x t. Por ejemplo, un término autorregresivo de retardo 1 es x t-1 (multiplicado por un coeficiente). Esta lección define los términos del promedio móvil. Un término medio móvil en un modelo de serie temporal es un error pasado (multiplicado por un coeficiente). Dejamos (wt desbordamiento N (0, sigma2w)), lo que significa que los w t son idéntica, independientemente distribuidos, cada uno con una distribución normal que tiene la media 0 y la misma varianza. El modelo de media móvil de primer orden, denotado por MA (1) es (xt mu wt theta1w) El modelo de media móvil de segundo orden, denotado por MA (2) es (xt mu wt theta1w theta2w) , Denotado por MA (q) es (xt mu wt theta1w theta2w puntos thetaqw) Nota. Muchos libros de texto y programas de software definen el modelo con signos negativos antes de los términos. Esto no cambia las propiedades teóricas generales del modelo, aunque sí cambia los signos algebraicos de los valores estimados de los coeficientes y los términos (no cuadrados) en las fórmulas para las ACF y las varianzas. Usted necesita comprobar su software para verificar si los signos negativos o positivos se han utilizado con el fin de escribir correctamente el modelo estimado. R utiliza signos positivos en su modelo subyacente, como lo hacemos aquí. Propiedades teóricas de una serie temporal con un modelo MA (1) Tenga en cuenta que el único valor distinto de cero en el ACF teórico es para el retardo 1. Todas las demás autocorrelaciones son 0. Por lo tanto, una ACF de muestra con una autocorrelación significativa sólo con el retardo 1 es un indicador de un posible modelo MA (1). Para los estudiantes interesados, las pruebas de estas propiedades son un apéndice a este folleto. Ejemplo 1 Supongamos que un modelo MA (1) es x t 10 w t .7 w t-1. Donde (wt overset N (0,1)). Así, el coeficiente 1 0,7. El ACF teórico se da por un diagrama de esta ACF sigue. La gráfica que se muestra es la ACF teórica para una MA (1) con 1 0,7. En la práctica, una muestra no suele proporcionar un patrón tan claro. Utilizando R, simulamos n 100 valores de muestra utilizando el modelo x t 10 w t .7 w t-1 donde w t iid N (0,1). Para esta simulación, sigue un diagrama de series de tiempo de los datos de la muestra. No podemos decir mucho de esta trama. A continuación se muestra el ACF de muestra para los datos simulados. Observamos un pico en el retraso 1 seguido por valores generalmente no significativos para los retrasos de 1. Obsérvese que la muestra ACF no coincide con el patrón teórico del MA subyacente (1), que es que todas las autocorrelaciones para los retrasos de 1 serán 0.Una muestra diferente tendría una ACF de muestra ligeramente diferente mostrada abajo, pero probablemente tendría las mismas características amplias. Propiedades Terapéuticas de una Serie de Tiempo con un Modelo MA (2) Para el modelo MA (2), las propiedades teóricas son las siguientes: Obsérvese que los únicos valores distintos de cero en la ACF teórica son para los retornos 1 y 2. Las autocorrelaciones para retardos mayores son 0 . Por lo tanto, una muestra de ACF con autocorrelaciones significativas en los intervalos 1 y 2, pero autocorrelaciones no significativas para retardos mayores, indica un posible modelo MA (2). Iid N (0,1). Los coeficientes son 1 0,5 y 2 0,3. Dado que se trata de una MA (2), la ACF teórica tendrá valores distintos de cero sólo en los retornos 1 y 2. Los valores de las dos autocorrelaciones distintas de cero son: Un gráfico del ACF teórico sigue. Como casi siempre es el caso, los datos de la muestra no se comportarán tan perfectamente como la teoría. Se simularon 150 valores de muestra para el modelo x t 10 w t .5 w t-1 .3 w t-2. Donde w t iid N (0,1). A continuación se muestra el gráfico de la serie de tiempo de los datos. Al igual que con el gráfico de la serie de tiempo para los datos de la muestra MA (1), no se puede decir mucho de ella. A continuación se muestra el ACF de muestra para los datos simulados. El patrón es típico para situaciones donde un modelo MA (2) puede ser útil. Hay dos picos estadísticamente significativos en los intervalos 1 y 2, seguidos de valores no significativos para otros desfases. Tenga en cuenta que debido al error de muestreo, la muestra ACF no coincide exactamente con el patrón teórico. ACF para modelos MA (q) Una propiedad de los modelos MA (q) en general es que hay autocorrelaciones no nulas para los primeros q retrasos y autocorrelaciones 0 para todos los retrasos gt q. No unicidad de la conexión entre los valores de 1 y (rho1) en MA (1) Modelo. En el modelo MA (1), para cualquier valor de 1. El 1/1 recíproco da el mismo valor para. Por ejemplo, use 0.5 para 1. Y luego utilice 1 / (0,5) 2 para 1. Youll get (rho1) 0.4 en ambos casos. Para satisfacer una restricción teórica llamada invertibilidad. Limitamos los modelos MA (1) a tener valores con valor absoluto menor que 1. En el ejemplo dado, 1 0,5 será un valor de parámetro permisible, mientras que 1 1 / 0,5 2 no. Invertibilidad de los modelos MA Se dice que un modelo MA es invertible si es algebraicamente equivalente a un modelo de orden infinito convergente. Al converger, queremos decir que los coeficientes de AR disminuyen a 0 a medida que retrocedemos en el tiempo. Invertibilidad es una restricción programada en el software de la serie de tiempo usado para estimar los coeficientes de modelos con términos de MA. No es algo que buscamos en el análisis de datos. En el apéndice se proporciona información adicional sobre la restricción de la invertibilidad para los modelos MA (1). Nota de Teoría Avanzada. Para un modelo MA (q) con un ACF especificado, sólo hay un modelo invertible. La condición necesaria para la invertibilidad es que los coeficientes tienen valores tales que la ecuación 1- 1 y-. - q y q 0 tiene soluciones para y que caen fuera del círculo unitario. Código R para los Ejemplos En el Ejemplo 1, se representó la ACF teórica del modelo x $ _ {t} $ w $ _ {t} $. 7w t - 1. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R usados para trazar el ACF teórico fueron: acfma1ARMAacf (mac (0.7), lag. max10) 10 retardos de ACF para MA (1) con theta1 0.7 lags0: 10 crea una variable llamada lags que va de 0 a 10. plot Abline (h0) añade un eje horizontal al diagrama El primer comando determina el ACF y lo almacena en un objeto (a0) Llamado acfma1 (nuestra elección de nombre). El comando plot (el 3er comando) traza retrasos en comparación con los valores ACF para los retornos 1 a 10. El parámetro ylab etiqueta el eje y y el parámetro principal coloca un título en la gráfica. Para ver los valores numéricos de la ACF simplemente utilice el comando acfma1. La simulación y las parcelas se realizaron con los siguientes comandos. Xcarzim. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 agrega 10 para hacer la media 10. La simulación predeterminada significa 0. plot (x, typeb, mainSimulated MA (1) data) (X, xlimc (1,10), mainACF para datos de muestra simulados) En el Ejemplo 2, se representó el ACF teórico del modelo xt 10 wt. 5 w t-1 .3 w t-2. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R utilizados fueron acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 trama (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) con theta1 0,5, (X, typeb, principal serie MA simulado) acf (x, xlimc (1,10), x2) (1) Para los estudiantes interesados, aquí hay pruebas de las propiedades teóricas del modelo MA (1). Cuando x 1, la expresión anterior 1 w 2. Para cualquier h 2, la expresión anterior 0 (x) La razón es que, por definición de independencia del peso. E (w k w j) 0 para cualquier k j. Además, debido a que w t tiene una media 0, E (w j w j) E (w j 2) w 2. Para una serie de tiempo, aplique este resultado para obtener la ACF dada anteriormente. Un modelo inversible MA es uno que puede ser escrito como un modelo de orden infinito AR que converge para que los coeficientes AR convergen a 0 a medida que avanzamos infinitamente en el tiempo. Bien demostrar invertibilidad para el modelo MA (1). A continuación, sustituimos la relación (2) por wt-1 en la ecuación (1) (3) (zt wt theta1 (z-theta1w) wt theta1z - theta2w) En el momento t-2. La ecuación (2) es entonces sustituimos la relación (4) por w t-2 en la ecuación (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Si continuáramos Sin embargo, si 1 1, los coeficientes que multiplican los retrasos de z aumentarán (infinitamente) en tamaño a medida que retrocedemos hacia atrás hora. Para evitar esto, necesitamos 1 lt1. Esta es la condición para un modelo de MA (1) invertible. Infinite Order MA model En la semana 3, veamos bien que un modelo AR (1) puede convertirse en un modelo de orden infinito MA: (xt - mu wt phi1w phi21w puntos phik1 w dots sum phij1w) Esta suma de términos de ruido blanco pasado es conocida Como la representación causal de un AR (1). En otras palabras, x t es un tipo especial de MA con un número infinito de términos remontándose en el tiempo. Esto se llama un orden infinito MA o MA (). Una orden finita MA es un orden infinito AR y cualquier orden finito AR es un orden infinito MA. Recordemos en la semana 1, observamos que un requisito para un AR estacionario (1) es que 1 lt1. Vamos a calcular el Var (x t) utilizando la representación causal. Este último paso utiliza un hecho básico sobre series geométricas que requiere (phi1lt1) de lo contrario la serie diverge. Navegación
No comments:
Post a Comment